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Abstract 
We describe a new approach for fabrication of cholesteric 

liquid crystal displays on flexible substrates based on drying-
assisted self-assembly of uniform droplets of liquid crystal. Key 
steps in the process include creating a close-packed monolayer of 
microsized droplets of liquid crystal in a polymer matrix on a 
conductive plastic surface, chemically crosslinking the polymer 
matrix to preserve the close-packed microcellular architecture, 
applying a protective overcoat containing a contrast control agent, 
and then applying a conductive ink by screen printing. The very 
uniform close-packed microcellular array of liquid crystal droplets 
may be fabricated on a large scale on moving web coating 
machines. Displays prepared by this technology exhibit low 
switching voltages, high contrast, and good brightness. 

 

Introduction 
There is currently a transition in the marketplace from the 

bulky cathode ray tube (CRT) display devices to the lighter and 
more compact flat panel devices for applications ranging from 
desktop and laptop computers to TVs. It is expected that the next 
generation of electronic display devices will be thinner, even 
lighter, and flexible or conformable [1]. These flexible electronic 
displays are also likely to find application in automobiles, signage, 
e-paper, and e-books. Furthermore, it is anticipated that the 
displays will be fabricated via efficient roll-to-roll (RTR) 
manufacturing processes.  

A promising approach for flexible electronic displays is based 
on polymer-dispersed cholesteric or chiral nematic liquid crystal 
(CLC) materials. The materials enable construction of reflective 
displays that are bistable. Furthermore, the electro-optic response 
is such that it is possible to operate large-area multiplexed displays 
based on simple passive-matrix addressing [2]. However, the 
performance of these materials has so far fallen short of optimum 
in terms of drive voltage, contrast, and brightness, particularly in 
potentially low-cost single-substrate devices. The problem lies in 
the architecture of polymer-dispersed liquid crystal (PDLC) films. 
The preparation of monolayer films with uniform cell dimensions 
by processes such as coating or printing remains a challenge.  

Here we demonstrate a new single-substrate approach for 
fabrication of polymer-dispersed cholesteric liquid crystal displays 
that exhibit electro-optic properties approaching glass cell and 
two-substrate devices. The single-substrate approach is to be 
contrasted with the traditional method for fabrication of LCD 
screens wherein two sheets of conductive glass are maintained at a 
fixed separation using spacers, and the liquid crystal material is 
imbibed between the glass sheets. It is preferable to start with a 
single conductive surface and build the device by potentially lower 

cost, higher throughput processes such as coating or printing. Our 
approach is based on two main ideas: (1) that relatively uniform 
droplets of the CLC material (with polydispersities less than 20%) 
may be prepared by the limited coalescence or Pickering emulsion 
method using particulate stabilizers [3,4], and (2) the droplets 
undergo drying-assisted self-assembly on the surface of indium tin 
oxide (ITO) to create a close-packed (pseudo hcp) monolayer. The 
mechanism of two-dimensional ordering of droplets has been 
described by Denkov et al.[5]. The process is driven by capillary 
attraction when the surfaces of the droplets protrude from the 
water layer. In other words, the droplets spontaneously self-
assemble into a close-packed array when the level of water in a 
drying film is approximately equal to the height of the droplets 
provided there is no resistance to self-assembly such as anchoring 
of the droplets to the surface of ITO or a high viscosity of the 
medium. The uniformity of packing and surface roughness 
depends on the droplet size distribution. Narrower size 
distributions result in more ordered (hexagonal close-packed or 
hcp) arrays and lower surface roughness.  

 

Results and Discussion 
Figure 1 shows the close-packed monolayer structure of 

PDLC films comprising droplets of CLC material prepared by 
limited coalescence that have been combined with an aqueous 
solution of polymer, spread on ITO coated polyethylene 
terephthalate (PET), and dried. The CLC material was a 
combination of MDA-01-1955 (74.6 wt%) and MDA-00-3506 
(25.4 wt%) with a reflection band centered at 590 nm. Both 
constituents were obtained from Merck, Darmstadt, Germany. The 
droplets prior to coating and drying had a mean diameter of 9.7 
µm with a coefficient of variation of 0.14. After coating and 
drying, the initially spherical droplets became ellipsoidal in shape 
with a thickness close to 5 µm. The root mean square (rms) surface 
roughness of the dried film was less than 0.2 µm. Calculations 
have shown that for a CLC material of given handedness, close to 
maximum reflectance is obtained if the thickness of the CLC 
material between the electrodes is about ten times the pitch of the 
chiral nematic helix [6]. For CLC materials that reflect visible 
light, a uniform thickness close to 5 µm is most desirable for 
obtaining maximum brightness in conjunction with high contrast 
(because of reduced back-scattering) and low switching voltage, 
the latter being directly proportional to the thickness of the film.  
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Reflected light optical micrograph of close-packed monolayer of 
CLC droplets prepared by drying-assisted self-assembly 

 
The polymer in the PDLC film is subsequently crosslinked to 

allow a water-based protective overcoat containing dispersed 
carbon black or other contrast control agent to be applied without 
disturbing the close-packed architecture. Figure 2 shows a roll of 
the polymer-dispersed CLC display fabricated on a moving web 
coating machine after the protective overcoat has been applied. A 
conductive ink formulation is screen-printed over the protective 
overcoat to complete construction of the device.   

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2. Roll of polymer-dispersed CLC display with close-packed 
monolayer architecture after the protective overcoat (containing dispersed 
carbon black) has been applied 

 
 Figure 3 shows the electro-optic response of the device. The 
horizontal axis indicates the amplitude of the addressing voltage 
pulse, and the vertical axis indicates reflectance measured at 0 V 
and 2 s after application of the voltage pulse. The latter was a 
square wave with a frequency of 1 kHz and duration of 100 ms. 
Reflectance was measured using an X-Rite 938 
spectrodensitometer. The open triangles represent the response 

when the CLC material was initially in the planar or bright state, 
and the closed circles represent the response when the material was 
initially in the focal conic or dark state. A voltage pulse higher 
than 63 V switched the display into the bright state, and a voltage 
pulse between 27 and 41 V switched the display into the dark state. 
Voltages less than 8 V did not influence the state of the display.  
 The maximum voltage (63 V) is consistent with the geometry 
of the device considering the voltage drop across the CLC material 
and the thickness of the protective overcoat, and it is only 
marginally higher than voltages measured in two-substrate PDLC 
devices prepared, for example, by the polymerization-induced 
phase separation process. The display has a peak reflectance of 
approximately 32%, and the contrast ratio under diffuse 
illumination excluding specular reflection (measured using a six-
inch integrating sphere) is about 9. The 45/0 contrast ratio is about 
30.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Electro-optic response of flexible single-substrate CLC display 
based on colloidal self-assembly  

 In summary, we have demonstrated a single-substrate bistable 
and passive matrix-addressable electronic paper device based on a 
close-packed polymer-dispersed cholesteric liquid crystal film on a 
flexible surface. The device has been successfully fabricated on 
moving web coating machines and exhibits electro-optic 
performance approaching glass cell and two-substrate 
constructions.  
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